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Abstract. In previous studies, we have explored the ansatz that the volume elements of the Bures metrics
over quantum systems might serve as prior distributions, in analogy with the (classical) Bayesian role of the
volume elements (“Jeffreys’ priors”) of Fisher information metrics. Continuing this work, we obtain exact
Bures prior probabilities that the members of certain low-dimensional subsets of the fifteen-dimensional
convex set of 4 × 4 density matrices are separable or classically correlated. The main analytical tools
employed are symbolic integration and a formula of Dittmann (J. Phys. A 32, 2663 (1999)) for Bures
metric tensors. This study complements an earlier one (J. Phys. A 32, 5261 (1999)) in which numerical
(randomization) – but not integration – methods were used to estimate Bures separability probabilities
for unrestricted 4 × 4 and 6 × 6 density matrices. The exact values adduced here for pairs of quantum
bits (qubits), typically, well exceed the estimate (≈ 0.1) there, but this disparity may be attributable to
our focus on special low-dimensional subsets. Quite remarkably, for the q = 1 and q = 1

2
states inferred

using the principle of maximum nonadditive (Tsallis) entropy, the Bures probabilities of separability are
both equal to

√
2− 1. For the Werner qubit-qutrit and qutrit-qutrit states, the probabilities are vanishingly

small, while in the qubit-qubit case it is 1
4 .

PACS. 03.67.-a Quantum information – 03.65.Bz Foundations, theory of measurement, miscellaneous
theories – 02.40.Ky Riemannian geometries – 02.50.-r Probability theory, stochastic processes,
and statistics

1 Introduction

1.1 Background

In a previous study [1], we exploited certain numerical
methods to estimate the a priori probability – based on
the volume element of the Bures metric [2–6] – that, a
member of the fifteen-dimensional convex set (R) of 4× 4
density matrices is separable (classically correlated), that
is, expressible as a convex combination of tensor products
of pairs of 2 × 2 density matrices. (Ensembles of separa-
ble states, as well as of bound entangled states can not
be “distilled” to obtain pairs in singlet states for quan-
tum information processing [7,8].) This Bures probabil-
ity estimate ≈ 0.1 was rather unstable in character ([1],
Tab. 1) due, in part it appeared, to difficult-to-avoid “over-
parameterizations” of R, as well as to the unavailability, in
that context, of numerical integration methods. But now
in Sections 2.1, 2.2 and 2.3 below, we are able to report
exact probabilities of separability by restricting consider-
ation to certain low-dimensional subsets of R, for which
symbolic integration can be performed. Then, in the sub-
sequent body of the paper, we investigate analogous ques-
tions when R is replaced by the convex sets of 9× 9 and
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6 × 6 density matrices. (We have also elsewhere studied,
using numerical methods, the Bures probability of sepa-
rability of the two-party Gaussian states [9] (cf. [10])).

Preliminarily though, we investigate in Section 1.2 cer-
tain relevant motivating issues, first having arisen in the
context of the 3 × 3 density matrices. These quantum-
theoretic entities belong to an eight-dimensional convex
set (Q), which we parameterize in the manner,

ρQ =
1
2

 v + z u− iw x− iy
u+ iw 2− 2v s− it
x+ iy s+ it v − z

 · (1)

The feasible range of the eight parameters – defined by
the boundary of Q – is determined by the requirements
imposed on density matrices, in general, that they be Her-
mitian, nonnegative definite (all eigenvalues nonnegative),
and have unit trace [11].

Dittmann ([2], Eq. (3.8)) (cf. [3]) has presented an
“explicit” formula (one not requiring the computation of
eigenvalues and eigenvectors) for the Bures metric [2–6]
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over the 3× 3 density matrices. It takes the form

dBures(ρ, ρ+ dρ)2 =
1
4

Tr
{

dρdρ+
3

1− Trρ3
(dρ− ρdρ)

×(dρ− ρdρ) +
3|ρ|

1− Trρ3
(dρ− ρ−1dρ)(dρ− ρ−1dρ)

}
.

(2)

If we implement this formula, using ρQ for ρ, we obtain
an 8× 8 matrix – the Bures metric tensor, which we will
denote by g.

It has been proposed [1,12–16] that the square root of
the determinant of g, that is, |g|1/2, which gives the vol-
ume element of the metric, be taken as a prior distribution
(to speak in terms of the specific instance presently before
us) over the 3× 3 density matrices (cf. [17]). This ansatz
is based on an analogy with Bayesian theory [18,19], in
which the volume element of the Fisher information [20]
matrix is used as a reparameterization-invariant prior,
termed “Jeffreys’ prior”.

Unfortunately, the (“brute force”) computation of the
determinant of such 8 × 8 symbolic matrices appears to
exceed present capabilities [21,22]. In light of this limita-
tion, we pursued a strategy of fixing (in particular, setting
to zero) a certain number (four) of the eight parameters,
thus, leading to an achievable calculation. A similar course
was followed in a brief exercise in ([14], Eqs. (31, 32)), but
using a quite different parameterization of Q – one based
on the expected values with respect to a set of four mu-
tually unbiased (orthonormal) bases of three-dimensional
Hilbert space [23,24].

In [16] we have reported exact results for the “Hall
normalization constants” for the Bures volumes of the n-
state quantum systems, n = 2, . . . , 6. These analyses uti-
lized certain parameterizations (of Schur form) of the n×n
density matrices [25], in which the eigenvalues and eigen-
vectors of these density matrices are explicitly given. It
was established there ([16], Sect. 2.2), among other things,
that the Bures volume for the 3×3 density matrices is, in
fact, normalizable over Q, forming a probability distribu-
tion. Since it appears to be highly problematical to find an
explicit transformation from this eigen-parameterization
of Boya et al. [25] to that used in equation (1), we can not
conveniently utilize the results of [16] for our specific pur-
poses here. For the n-level systems, n > 3, the analogous
task would appear to be even more challenging, since the
appropriate parameterizations of SU(n) and the associ-
ated invariant (Haar) measures seem not yet to have been
developed (cf. [26–29]).

1.2 Two forms of conditional Bures priors for a certain
four-parameter three-level quantum system

Since we aim to reexamine the specific findings in [12], we
will cast our analyses specifically in terms of the parame-
terized form (1). We have computed, using the formula (2),
the 8×8 Bures metric tensor (g) associated with (1). Then
– only subsequent to this computation – we set the four

parameters s, t, u and v all equal to zero in g, obtaining
what we denote by g̃. (Actually, this “conditioning” on
P can be performed immediately after the determination
of the differential element dρ, thus simplifying the further
calculations in (2).) Then,

|g̃|
1
2 =

1
64v(1− v)

1
2 (v2−x2−y2−z2)

1
2 (x2+y2+z2−(v−2)2)

,

(3)

which could be considered to constitute the (unnormal-
ized) conditional Bures prior over P .

On the other hand, if we ab initio nullify the same four
parameters (s, t, u, v) in ρQ, we get the family of density
matrices, defined over a four-dimensional convex subset
(P ) of Q,

ρP =
1
2

 v + z 0 x− iy
0 2− 2v 0

x+ iy 0 v − z

 , (4)

which was the specific object of study in [12].
Now, let us describe two ways in which an alternative

to the presumptive conditional prior (3), that is,

1
16v(1− v)

1
2 (v2 − x2 − y2 − z2)

1
2
, (5)

has been derived. We obtain the outcome (5) if we either:
(a) employ ρP directly in Dittmann’s formula (2), and gen-
erate the corresponding 4× 4 metric tensor and compute
the square root of its determinant (the procedure followed
in [12]); or (b) extract from g̃ the 4 × 4 submatrix with
rows and columns associated with (the four non-nullified
parameters) v, x, y and z, that is

1
4(v2 − x2 − y2 − z2)

×


v−x2+y2+z2

1−v −x −y −z
−x v2−y2−z2

v
xy
v

xz
v

−y xy
v

v2−x2−z2

v
yz
v

−z xz
v

yz
v

v2−x2−y2

v

 (6)

and calculate the square root of its determinant. The ma-
trix (6) is not exactly the same as (14) there – a result
which was presumably also obtained by the use of ρP
in (2). The four diagonal entries there are the negatives
of the ones in (6), that is, we had there ([12], Eq. (14))

1
4(v2 − x2 − y2 − z2)

×


v−x2+y2+z2

1−v −x −y −z
−x y2+z2−v2

v
xy
v

xz
v

−y xy
v

x2+z2−v2

v
yz
v

−z xz
v

yz
v

x2+y2−v2

v

 · (7)
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In any case, the determinants of these two nonidentical
4×4 matrices are the same, so the substantive conclusions
of [12] regarding Bures priors are unchanged.

Hall has pointed out that the result (3) is, in fact, an
eight-dimensional volume element rather that the four-
dimensional one desired here. In addition, a referee has
remarked there can be “two different sets of basis one-
forms that are used to compute the volume element. This
happens, for example, in SU(n) when one uses A−1dA
as the matrix of left invariant one-forms. There exist n2

invariant forms in this matrix. One must choose an inde-
pendent set. This set is thus not unique”.

It is interesting to compare the form of (6) with the
Bures metric tensor for the 2× 2 systems ([12], Eq. (4))

1
4(1− x2 − y2 − z2)

×

1− y2 − z2 xy xz
xy 1− x2 − z2 yz
xz yz 1− x2 − y2

 , (8)

obtained by the application of Dittmann’s formula ([2],
Eq. (3.7) (cf. (2)),

dBures(ρ, ρ+dρ)2 =
1
4

Tr{dρdρ+
1
|ρ| (dρ− ρdρ)(dρ− ρdρ)}.

(9)

(Of course, in the limit v → 1, ρP , in effect, degenerates to
a two-level system, and it is of interest to keep this in mind
in examining the results presented here. In the opposite
limit v → 0, one simply leaves the domain of quantum
considerations.)

We note that (3) differs from (5) in that it has an
additional factor,

f =
1

4(x2 + y2 + z2 − (v − 2)2)
· (10)

Since v can be no greater than 1 and x2+y2+z2 no greater
than v if ρP is to meet the nonnegativity requirements of a
density matrix, f must be negative over the feasible range
(P ) of parameters of ρP . In fact, the square root of the
determinant of the “complementary” 4×4 submatrix of g̃ –
the one associated with the nullified parameters, s, t, u, w,
rather than v, x, y, z – is equal to f .

Now, it is interesting to note – transforming the Carte-
sian coordinates (x, y, z) to spherical ones (r, θ, φ) – that
while the previous result (5) of [12] can be normalized to
a (proper) probability distribution over P ,

p(v, r, θ, φ) =
3r2 sin θ

4π2v(1− v)
1
2 (v2 − r2)

1
2
, (11)

the new prior (3) is itself not normalizable over P , that is,
it is improper. However, we can (partially) integrate (3)
over the three spherical coordinates to obtain the univari-
ate marginal over the variable v,

q(v) =
π2

64v
(−1− 2

(1− v)
1
2

+
1

−1 + v
). (12)

The integral of (12) over v ∈ [0, 1] diverges, however. We
can compare (12) with the univariate marginal probability
distribution of (11) ([12], Eq. (19))

p(v) =
3v

4(1− v)
1
2
· (13)

(In [30,31] p(v) was interpreted as a density-of-states
or structure function, for thermodynamic purposes, and
the associated partition function reported.) The behaviors
of (12) and (13) are quite distinct, the latter monotoni-
cally increasing as v increases, while the [negative] of the
former has a minimum at v ≈ 0.618034.

Let us also observe that the factor f , given in (10), the
added presence of which leads to the non-normalizability
of (3), takes the form in the spherical coordinates,

f =
1

4(r + 2− v)(r + v − 2)
=

1
4(r2 − (v − 2)2)

· (14)

The eight eigenvalues (λ) of the nullified form of the Bures
metric tensor g, that is g̃, come in pairs. They are

λ1,2 =
1
4v
, λ3,4 =

1
4 + 2r − 2v

, λ5,6 = − 1
2(r + v − 2)

,

λ7,8 =
1

−2(r2 + (v − 2)v) + 2(r4 + v4 + 2r2(2 + (v − 4)v))
1
2
·

(15)

Of course, the product of these eight eigenvalues gives us
|g̃|, the square root of which – that is (3) – constitutes
the new (but unnormalizable/improper) possibility here
for the conditional Bures/quantum Jeffreys’ prior over the
four-dimensional convex subset P of the eight-dimensional
convex set Q composed of the 3× 3 density matrices.

2 Bures priors and separability probabilities
for various composite quantum systems

2.1 One-parameter 2⊗ 2 systems

Now, let us seek to extend the comparative form of anal-
ysis in Section 1.2 to the 4 × 4 density matrices. For the
Bures metric in this setting we rely upon Proposition 1 in
the recent paper of Dittmann [3], which presents an ex-
plicit formula in terms of the characteristic polynomials
of the density matrices. (Let us point out that in the ear-
lier preprint versions, in particular quant-ph/9911058v4,
of our paper here, a number of “anomalous” results were
reported. These turned out to be attributable to our mis-
interpretation of the symbol Y ′ in [3] as the transpose of
Y , rather than the conjugate transpose of Y . We have
since amended our analyses in this regard.) We apply it
to several one-dimensional convex subsets of the fifteen-
dimensional convex set (R) of 4×4 density matrices. These
subsets – unless otherwise indicated – are (partially) char-
acterized by having their associated two 2 × 2 reduced
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systems described by the fully mixed (diagonal) density
matrix, having 1

2 for its two diagonal entries. Or to put it
equivalently, the three Stokes/Bloch parameters for each
of the two subsystems are all zero. (A complete charac-
terization of the inseparable 2 ⊗ 2 systems with maxi-
mally disordered subsystems has been presented within
the Hilbert-Schmidt space formalism [32].)

2.1.1 The three intra-directional correlations are all equal

For our first scenario, we stipulate zero correlation be-
tween the spins of these two reduced (fully mixed) systems
in different directions, but identical non-zero (in general)
correlation between them in the same (x, y or z) direc-
tions. We denote this common correlation parameter by
ζ. In terms of the parameterization of the coupled two-
level systems given in [33] (cf. [34,35]), the feasible range
of ζ is [− 1

4 ,
1
12 ]. [The parameterization in [33] is based on

the superposition of sixteen 4 × 4 matrices – which are
the pairwise direct products of the four 2 × 2 Pauli ma-
trices, including among them, the identity matrix. Since
the six Stokes/Bloch parameters have all been set to zero,
the nine correlation parameters (ζij , i, j = x, y, z) must
all lie between −1 and 1, and the nine-fold sum of their
squares can not exceed 3 [33]. It has been shown that all
the tangent vectors corresponding to a basis of the Lie
algebra – corresponding to two copies of SU(2) – span
six dimensions, and thus there are, in fact, nine nonlo-
cal parameters [36]. A referee has suggested that the use
of “local orbits would simplify the picture especially for
physicists dealing professionally with entanglement. It is
because then the reader knows that one deals with what is
of the main importance (orbit parameters – like Schmidt
coefficients for pure states) from the point of view of
say quantum information transmission (like e.g. telepor-
tation)” (cf. [37,38]).]

If we implement the formula of Dittmann ([3],
Eq. (9)) using a general (fifteen-parameter) 4 × 4 den-
sity matrix [33], then nullify twelve of the parameters of
the resultant Bures metric tensor, and set the indicated
remaining three (ζii) all equal to one value ζ, we obtain
as the conditional Bures prior (the counterpart of |g̃| 12 in
Sect. 1.2),

32768
(1− 4ζ)3(1 + 4ζ)

9
2
√

1− 12ζ
· (16)

On the other hand, if we set the fifteen parameters in
precisely this same fashion before employing the formula
of Dittmann, we obtain for the volume element

2
√

3
(1− 8ζ − 48ζ2)

1
2
· (17)

The former prior is non-normalizable over ζ ∈ [− 1
4 ,

1
12 ],

while the latter is normalizable, its integral over this in-
terval equalling π

2 . In Figure 1, we display this probabil-
ity distribution. The pair of outcomes ((16) and (17)) is,
thus, fully analogous in terms of normalizability, to what

-0.25 -0.2 -0.15 -0.1 -0.05 0.05

5

10

15

20

Bures prior

Fig. 1. Normalized conditional Bures prior (17) for one-
parameter four-level scenario 1.

we found above ((3) and (5)) for the particular four-
dimensional case (P ) of the three-level quantum systems
(Q) investigated above.

Now, for ζ ∈ [− 1
12 ,

1
12 ], the associated one-parameter

density matrix is separable or classically correlated (a nec-
essary and sufficient condition for which for the 4× 4 and
6×6 density matrices is that their partial transposes have
nonnegative eigenvalues [39]). So, if we integrate the nor-
malized form of (17) over this interval, we obtain the con-
ditional Bures probability of separability (cf. [1,9,40,41]).
This probability turns out to be precisely 1

2 . Contrast-
ingly, in [1], for arbitrary coupled two-level systems in the
fifteen-dimensional convex set R, it was necessary to rely
upon numerical (randomization) simulations for estimates
of the Bures probability of separability, so this exact re-
sult appears quite novel in nature. (In [1], the (uncon-
ditional) Bures probability of separability was estimated
to be ≈ 0.1.)

2.1.2 One intra-directional correlation equals the negative
of the other two

A closely related scenario in which the probability of sep-
arability is also precisely 1

2 is one for which the only non-
nullified parameters are again the three intra-directional
correlations, but now two of them (say, for the x- and y-
directions) are set equal to ζ and the third to −ζ. Then,
the conditional Bures probability distribution (computed
in the analogous manner) is (Fig. 2)

4
√

3
π(1 + 8ζ − 48ζ2)

1
2
· (18)

The region of feasibility is [− 1
12 ,

1
4 ] and of separability,

[− 1
12 ,

1
12 ].

2.1.3 The six inter-directional correlations are all equal

Let us now examine another one-parameter scenario in
which the pair of two-level systems is still composed of
fully mixed states, but for which the correlations (ζii)
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Fig. 2. Normalized conditional Bures prior (18) for one-
parameter four-level scenario 2.
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Fig. 3. Normalized conditional Bures prior (19) for one-
parameter four-level scenario 3.

in the same directions are zero, while the correlations in
different directions (ζij , i 6= j) are not necessarily zero and
all equal. Thus, we ab initio set the (six) interdirectional
correlations to ζ, the other nine parameters all to zero,
and employ the formula of Dittmann [3] (in the manner
we have settled upon for this and all subsequent anal-
yses here). We obtain the conditional Bures probability
distribution (Fig. 3),

8
√

2
π(1− 8ζ − 128ζ2)

1
2
, (19)

over the feasible range, ζ ∈ [− 1
8 ,

1
16 ]. The range of separa-

bility is [− 1
16 ,

1
16 ]. The associated conditional Bures prob-

ability of separability is then 1
2 + sin−1 1

3
π ≈ 0.608173.

2.1.4 The six inter-directional correlations all equal
the negative of the three intra-directional correlations

Another one-dimensional scenario of possible interest is
one in which we set the intra-directional correlations to
ζ and the inter-directional ones to −ζ. Now, the range of
feasibility is ζ ∈ [− 1

20 ,
1
12 ] and the interval of separability

is ζ ∈ [− 1
20 ,

1
20 ]. Now, application of the Dittmann formula

-0.04-0.02 0.02 0.04 0.06 0.08

8

10

12

14

16

18

Bures prior

Fig. 4. Normalized conditional Bures prior for one-parameter
four-level scenario 4.

yields

12
3− 20ζ

(4ζ − 1)(12ζ − 1)(1 + 20ζ)
, (20)

the square root of which gives us the unnormalized Bures
prior. Since the integrations involved yield various ellip-
tic functions, we have to resort to numerical methods
to obtain the Bures probability of separability, that is,
0.702675. In Figure 4, we plot the associated Bures prob-
ability density function.

2.1.5 Three scenarios for which the probabilities
of separability are simply 1

If we set all nine (inter- and intra-) directional correlations
to one value ζ, and the other six (Stokes/Bloch) param-
eters to zero, so that again the two reduced systems are
fully mixed in nature, then proceeding along the same
lines as above, we obtain the particularly simple condi-
tional Bures probability distribution,

12
π(1− 144ζ2)

1
2
, (21)

over the feasible range ζ ∈ [− 1
12 ,

1
12 ]. However, all the

states in this range are separable, so the associated prob-
ability (Bures or otherwise) of separability is simply 1.

If we (formally, but somewhat unnaturally) set all fif-
teen parameters to ζ, say, then the conditional Bures prior
is proportional to

2(3− 20ζ)
1
2

(1 + 12ζ − 336ζ2 + 576ζ3)
1
2
· (22)

Though version 3 of MATHEMATICA failed (exceed-
ing its iteration limit of 4096) to integrate over ζ ∈
[− 1

4(3+2
√

3)
≈ −0.0386751, 1

12 ], version 4 (as shown by
M. Trott) yielded

1
3

√
2
33

(6 +
√

3)Π(
5
33

(6 +
√

3);

sin−1 (

√
1
11

(13− 4
√

3))| 1
11

(13 + 4
√

3)). (23)
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Fig. 5. Bures conditional probability distribution (25) over the
two-qubit Werner states.

In any case, all the 4 × 4 density matrices in this one-
dimensional set are separable, as well. Another scenario
in which the probability of separability is unity, is one in
which the three intra-directional correlations (ζii) are all
zero, and the two systems are anti-correlated in different
directions, that is ζij = −ζji.

2.1.6 Rains-Smolin entangled states

On page 182 of [42], Rains presents a one-parameter (x)
set of 4×4 density matrices, apparently communicated to
him by Smolin. The corresponding normalized Bures prior
for this set of states – defined over the range of feasibility
x ∈ [−u, u], u =

√
807599/175 ≈ 5.13523 – is

175
π(807599− 30625x2)

1
2
· (24)

None of the members of this set is separable.

2.1.7 Two-qubit Werner states

It is of some interest that all the Bures conditional prob-
abilities of separability we obtained in the various one-
dimensional scenarios above are substantially larger than
the approximate estimate of 0.1 for the fifteen-dimensional
set of 4 × 4 density matrices, obtained on the basis of
(unfortunately, but perhaps unavoidably, rather crude)
numerical methods in [1]. One does, however, obtain a
(somewhat smaller) probability of separability of 1

4 for the
two-qubit “Werner states” [43]. These are mixtures of the
fully mixed state and a maximally entangled state, with
weights 1 − ε and ε, respectively. (In terms of our other
set of parameters, the three intra-directional correlations
are all equal to −ε/4, while the remaining twelve param-
eters are zero. A referee has suggested that the parame-
ter ε is comparable to the visibility in optics [44], that is
(Imax− Imin)/(Imax + Imin), where I is the intensity.) The
range of feasibility is ε ∈ [0, 1] and of separability, [0, 1

3 ].
The Bures conditional probability distribution (Fig. 5) is

3
√

3
π(4 + 8ε− 12ε2)

1
2
· (25)
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Marginal Bures prior

Fig. 6. Univariate marginal Bures prior probability distribu-
tion for two-parameter four-level scenario.

2.2 Two-parameter 2⊗ 2 systems

2.2.1 Two intra-directional correlations are equal
and the third one, free

Now we modify scenario 2 of Section 2.1.2, in that we
set two intra-directional correlations again to a common
value, call it ζ, and the third, not to −ζ this time, but
to an independent parameter, call it η. (The remaining
parameters – the six Stokes/Bloch ones and the six inter-
directional correlations stay fixed at zero.) The normalized
conditional Bures prior is then

8
√

2

π((1 + 4η)((1− 4η)2 − 64ζ2))
1
2
· (26)

The (triangular-shaped) range of feasibility over which we
integrated to normalize the (conditional) Bures volume
element extends in the η-direction from − 1

4 to 1
4 . In this

triangle, we integrated first over ζ from (−1+4η)
8 to (1−4η)

8 .
The part of the (rhombus-shaped) range of separability for
η ∈ [0, 1

4 ] coincides with the feasible domain, and for η ∈
[− 1

4 , 0] extends over ζ ∈ [− (1+4η)
8 , (1+4η)

8 ]. The univariate
marginal probability distribution (Fig. 6) of (26) over η is√

2/
√

1 + 4η.
The probability of separability for this two-parameter

four-level scenario is, then, remarkably simply,
√

2− 1 ≈
0.414214 – being somewhat less than the 1

2 of the re-
lated scenario 2 of Section 2.1.2. (Of this total figure,
1− 1√

2
≈ 0.292893 comes from the integration over η > 0

and 3√
2
− 2 ≈ 0.12132 from the other half of the rhom-

boidal separability region, that is for η < 0. This second
result required the use of version 4 of MATHEMATICA,
and I thank Michael Trott for his assistance.)

2.2.2 States inferred by the principle of maximum
nonadditive (Tsallis) entropy

Here the two variables parameterizing the 4× 4
density matrices are the q-expected value (bq
– “internal energy”) and the q-variance (σ2

q )
of the Bell– Clauser- Horne- Shimony- Holt (Bell-CHSH)
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8

((−1 + 4ζ − 4η − 4κ)(1 + 4ζ + 4η − 4κ)(1 + 4ζ − 4η + 4κ)(−1 + 4ζ + 4η + 4κ))
1
2
· (29)
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Fig. 7. Marginal Bures prior probability distribution over the
expected value b1.

observable [45] or “Hamiltonian” used by Abe and
Rajagopal [46] (cf. [47]) in their effort to avoid fake entan-
glement when only bq is employed in the Jaynes maximum
entropy inference scheme [48]. We know from [46] that
the feasible region is determined by 0 ≤ bq ≤ 2

√
2 and

2
√

2bq ≤ σ2
q ≤ 8.

Let us, first, set the positive parameter q indexing the
Tsallis entropy to 1. (“It is of interest to note that for
q > 1, indicating the subadditive feature of the Tsallis en-
tropy, the entangled region is small and enlarges as ones
goes into the superadditive regime, where q < 1” [46].)
Then, the corresponding Bures prior probability distribu-
tion – again applying the formula of Dittmann – is

1
π(8− σ2

1)
1
2 (σ2

1 − 8b41)
1
2
· (27)

In Figure 7, we show the univariate marginal probabil-
ity distribution of (27) – having integrated it over the
parameter σ2

1 – for the expected value b1. The region
of separability is determined ([47], Eqs. (11, 12)) by the
supplementary requirements that σ2

1 ≤ 8 − 2
√

2b1 and
b1 ≤

√
2. The probability of separability is, then,

√
2−1 ≈

0.414214 (cf. [46], Fig. 1d).
For q = 1

2 , the corresponding Bures probability
distribution is (cf. (27))

32
π(32 + 4b 1

2

2 + (σ2
1
2
− 8)σ2

1
2
)

3
2
· (28)

In Figure 8, we show the marginal probability distribution
of (28) over the q-expectation value b 1

2
.

The probability of separability is then again, quite re-
markably,

√
2− 1. (The domain of integration is now de-

termined by the supplementary requirements that σ2
1
2
≤

8 + 2
√

2b 1
2
− 2
√

2
√
b 1

2
(4
√

2 + b 1
2
) and b 1

2
≤ 4− 2

√
2.) So,

it would appear from our two analyses that the probabil-
ity of separability is independent of the particular choice
of q. (Certainly, whether or not this is so bears further
investigation. However, we have encountered initial com-
putational difficulties in obtaining results for other choices
of the index q.)

0.5 1 1.5 2 2.5
b

0.2

0.4

0.6

0.8

Marginal Bures distribution

Fig. 8. Marginal Bures prior probability distribution over the
expected value b 1

2
.

Of course, it would be of interest to consider the index
of the Tsallis entropy q as a third intrinsic variable pa-
rameterizing the joint states of the two qubits, in addition
to bq and σ2

q , but doing so would appear to exceed current
computational capabilities.

2.3 Three-parameter 2⊗ 2 systems

2.3.1 The three intra-directional correlations
are independent

If we now modify the scenario immediately above by let-
ting all three intra-directional correlations be indepen-
dent of one another – while maintaining the other twelve
(Stokes/Bloch and inter-directional correlation) parame-
ters of the four-level systems at zero – the conditional
Bures prior takes the form (symmetric in the three free
parameters)

see equation (29) above.

The normalization factor, by which this must be divided
to yield a probability distribution is π2

8 . The Bures prob-
ability of separability is 2

π −
1
2 ≈ 0.13662.

To obtain these results, we employed the change-of-
variables, κ = − 1

4 + ζ − η − υ
4 , that is, υ = −1 + 4ζ −

4η − 4κ. The integration over the domain of feasibility
was obtained using the ordered limits, ζ ∈ [−1/4, 1/4];
υ ∈ [2(−1 + 4ζ), 0]; and η ∈ [(−2 − υ)/8, (8ζ − υ)/8].
For the domain of separability, we employed ζ ∈ [0, 1/4];
υ ∈ [2(−1 + 4ζ), 0]; and η ∈ [(−2 + 8ζ − υ)/8,−υ/8]. The
univariate marginal probability distribution of (29) over
ζ ∈ [−1/4, 1/4] is the uniform one.

2.3.2 Diagonal density matrices

As a simple exercise of interest, we have analyzed – again
with the use of Dittmann’s general formula for the Bu-
res metric tensor – four-level diagonal density matrices,
having entries denoted x, y, z, 1−x−y− z. (All such den-
sity matrices are separable.) The Bures prior probability
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distribution over the three-dimensional simplex spanned
by these entries is, then, simply the Dirichlet distribution

1
π2(xyz(1− x− y − z))

1
2
, (30)

which serves as the prior probability distribution
(“Jeffreys’ prior”) based on the Fisher information met-
ric for a quadriinomial distribution [18,19]. This result
is, thus, consistent with the study of Braunstein and
Caves [6], in which the Bures metric was obtained by max-
imizing the Fisher information over all quantum measure-
ments, not just ones described by one-dimensional orthog-
onal projectors.

2.4 A four-parameter 2⊗ 2 system

2.4.1 One-parameter unitary transformation of diagonal
density matrices

If we transform the (three-parameter) diagonal den-
sity matrices discussed immediately above by a (one-
parameter) 4× 4 unitary matrix,

U1 = eiwP =

1 0 0 0
0 cosw sinw 0
0 − sinw cosw 0
0 0 0 1

 (31)

where P is a traceless Hermitian matrix (one of the stan-
dard generators of SU(4) [49]) with its only nonzero en-
tries being i in the (3,2) cell and −i in the (2,3) cell, we
find that the (unnormalized) Bures prior is (cf. (30))√

(y − z)2

8(xyz(y + z)(1− x− y − z))
1
2
, (32)

being independent of the fourth (unitary) parameter w.
To normalize this prior over the product of the three-
dimensional simplex and the interval w ∈ [0, 2π], we need
to multiply it by 3

π2 . The additional separability require-
ment is that w ∈ [−u, u], where

u =
sin−1(2

√
x−x2−xy−xz√
y2−2yz+z2

)

2
· (33)

The approximate Bures probability of separability is,
then, 0.112, similar to the (unrestricted) estimate in [1].

2.5 One-parameter 3⊗ 3 systems – the two-qutrit
Werner states

Caves and Milburn ([50], Sect. 3) have constructed
two-qutrit Werner states. (Such states violate the partial
transposition criterion for separability, while satisfying
a certain reduction criterion, the violation of which
implies distillability [51]). Again applying Proposition 1
of Dittman [3] to this one-dimensional set of 9× 9 density

0.999 0.9992 0.9994 0.9996 0.9998

1 1013

2 1013

3 1013

4 1013

Bures prior

Fig. 9. Bures conditional (unnormalized) measure – that is,
the square root of the ratio (34) – over the two-qutrit Werner
states.

matrices, we obtained for the (unnormalized) conditional
Bures prior, the square root of the ratio of

− 16(2 + 7ε)(496 + 14384ε+ 179472ε2 + 1269568ε3

+ 5676488ε4 + 16753596ε5 + 31419646ε6

+ 31863023ε7 + 14859999ε8) (34)

to

3(−1 + ε)5(1 + 8ε)(31 + 161ε)

× (31 + 603ε+ 3993ε2 + 8981ε3).

The range of separability is [0, 1
4 ] [50]. (If the maximally

entangled component of the Werner state is replaced by
an arbitrary 9× 9 density matrix, the range of separabil-
ity for the resulting mixture must include [0, 1

28 ] [50].) The
integral of the square root of the ratio (34) over this range
is 1.05879, while over [0, 0.999999], it is 9.62137 × 109.
The conditional Bures probability of separability of the
two-qutrit Werner states, thus, appears to be vanishingly
small (cf. [9,10]). The “maximally entangled states of
two qutrits are more entangled than maximally entan-
gled states of two qubits” [50]. The two-qutrit Bures prior
(Fig. 9) is much more steeply rising than the two-qubit
one displayed in Figure 5. (Note, of course, the difference
in the scale employed in the two plots.)

2.6 One-parameter 2⊗ 3 systems

It clearly constitutes a challenging task to extend (cf.
Sect. 2.2) the series of one-dimensional analyses in
Section 2 to m-dimensional (m > 1) subsets of the fifteen-
dimensional set of 4×4 density matrices, and a fortiori to
n×n density matrices, n > 4. Only in highly special cases,
does it appear that the use of exact integration methods,
such as exploited above, will succeed, and recourse will
have to be had to numerical techniques, such as were ad-
vanced in [1,9]. We should note, though, that in those two
studies, numerical integration procedures were not readily
applicable. They would be available if one has, as here,
explicit forms for the Bures prior, and can suitably define
the limits of integration – that is, the boundaries of the
sets of density matrices (and separable density matrices)
under analysis.
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Fig. 10. Normalized conditional Bures prior over the single
parameter (ν) of the six-level system (35).

2.6.1 Scenario 1

As an illustration of the application of numerical integra-
tion techniques to such a higher-dimensional scenario, we
have considered the one-parameter (ν) family of 6×6 den-
sity matrices,

see equation (35) above

the 2 × 2 and 3 × 3 reduced systems of which
are fully mixed. The range of feasibility is ν ∈
[−0.0546647, 0.10277] and that of separability is ν ∈
[−0.0546647, 0.0546647]. (Again, we apply the positive
partial transposition Peres-Horodecki condition, sufficient
as well as necessary for both the 2 ⊗ 2 and 2 ⊗ 3 sys-
tems [39].) We have determined the corresponding (con-
ditional) Bures prior, again based on Proposition 1 in [3].
The probability of separability is the ratio of the integrals
of the prior over these two intervals. This turns out to be
0.607921 – as seems plausible from the plot of the (condi-
tional) Bures prior over the feasibility range in Figure 10.
This figure displays a minimum at ν = 0 (cf. Fig. 4). For
ν < 0, we numerically integrate, as well as plot, the ab-
solute value of the (imaginary) Bures prior in this part of
the parameter range.

2.6.2 The qubit-qutrit Werner states

The probability of separability also appears to be van-
ishingly small for the “hybrid” qubit-qutrit Werner states
(cf. [9]). The greatest degree of entanglement one can hope
to achieve is to have the qubit in a fully mixed state,
and the qutrit in a degenerate state, with spectrum 1

2 ,
1
2 and 0. The range of separability can then be shown
to be [0, 1

4 ] [52]. (For the analysis of multi-qubit Werner
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Fig. 11. Bures conditional (unnormalized) measure – that is,
the square root of the ratio (36) – over the qubit-qutrit Werner
states.

states, see [53].) The (unnormalized) conditional Bures
prior (Fig. 11) is the square root of the ratio of

10(1 + 2ε)(26 + 286ε+ 1236ε2 + 2506ε3 + 2021ε4) (36)

to

(−1 + ε)2(1 + 5ε)(13 + 32ε)(13 + 126ε+ 429ε2 + 512ε3).

3 Concluding remarks

We believe the main contribution of this study is that it
emphatically reveals – through its remarkably simple re-
sults of an exact nature – the existence of an intimate
connection between two major (but, heretofore, rather
distinct) areas of study in quantum physics. By this is
meant the study of: (1) metric structures on quantum
systems [54]; and (2) entanglement of quantum systems
(cf. [55]). It should be noted, however, that the several
exact Bures probabilities of separability adduced above
are all for certain qubit-qubit systems (representable by
4×4 density matrices). It would be of interest to see if ex-
act results are obtainable for qubit-qutrit (representable
by 6× 6 density matrices) and even larger-sized systems,
as well as for qubit-qubit systems parameterized by more
than three variables (the maximum possible being fifteen).
Such investigations would, undoubtedly, demand consid-
erable computational resources and sophistication. (Let us
also direct the reader’s attention to our study [9], in which
we employ numerical methods to estimate the Bures prob-
ability of separability of the two-party Gaussian states,
forms of continuous variable systems. For this purpose, we
employed an analogue [57] (cf. [58]) of the Peres-Horodecki
criterion for separability [39].)
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We also intend to use the Bures probabilities as weights
for the entanglement of formation [56]. By doing so, we
should be able to order different scenarios by the total
amount of entanglement they involve. As a first exam-
ple, we have found this figure to be equal to 0.0441763 for
the first (one-parameter) scenario we have analyzed above
(Sect. 2.1), that of three equal intra-directional correla-
tions (and all other parameters fixed at zero).

One of the clearer findings of [1] was that the Bures
(minimal monotone) probability of separability provides
an upper bound on the related probability for any mono-
tone metric. So, it would appear that the results re-
ported above might also be interpreted as providing upper
bounds on any acceptable measure of the probability of
separability.

Let us also remark that a quite distinct direction per-
haps worthy of exploration is the use of Bures priors as
densities-of-states or structure functions for thermody-
namic purposes (cf. [30,31,59–61]). (However, our initial
efforts to find explicit forms for the partition functions
corresponding to the results above have not succeeded.)

I would like to express appreciation to the Institute for The-
oretical Physics for computational support in this research,
to Michael Trott of Wolfram Research for analyzing a num-
ber of the symbolic integration problems here with version 4 of
MATHEMATICA, to K. Życzkowski for his continuing encour-
agement and interest, and to M.J.W. Hall for helpful insights
into the properties of the Bures metric, as applied to lower-
dimensional subsets of the (n2 − 1)-dimensional n× n density
matrices.
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